skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jacobson, Mark"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    High transportation costs make energy and food expensive in remote communities worldwide, especially in high-latitude Arctic climates. Past attempts to grow food indoors in these remote areas have proven uneconomical due to the need for expensive imported diesel for heating and electricity. This study aims to determine whether solar photovoltaic (PV) electricity can be used affordably to power container farms integrated with a remote Arctic community microgrid. A mixed-integer linear optimization model (FEWMORE: Food–Energy–Water Microgrid Optimization with Renewable Energy) has been developed to minimize the capital and maintenance costs of installing solar photovoltaics (PV) plus electricity storage and the operational costs of purchasing electricity from the community microgrid to power a container farm. FEWMORE expands upon previous models by simulating demand-side management of container farm loads. Its results are compared with those of another model (HOMER) for a test case. FEWMORE determined that 17 kW of solar PV was optimal to power the farm loads, resulting in a total annual cost decline of ~14% compared with a container farm currently operating in the Yukon. Managing specific loads appropriately can reduce total costs by ~18%. Thus, even in an Arctic climate, where the solar PV system supplies only ~7% of total load during the winter and ~25% of the load during the entire year, investing in solar PV reduces costs. 
    more » « less